Briefly, this error occurs when Elasticsearch does not acknowledge a request to delete a template. This could be due to a network issue, a problem with the Elasticsearch cluster, or the template may not exist. To resolve this issue, you can try the following: 1) Check the network connection and ensure that the Elasticsearch cluster is running properly. 2) Verify that the template you are trying to delete actually exists. 3) If the problem persists, consider restarting the Elasticsearch cluster.
In addition we recommend you run the Elasticsearch Template Optimizer to fix problems in your data modeling.
It will analyze your templates to detect issues and improve search performance, reduce indexing bottlenecks and optimize storage utilization. The Template Optimizer is free and requires no installation.
Overview
Metadata in Elasticsearch refers to additional information stored for each document. This is achieved using the specific metadata fields available in Elasticsearch. The default behavior of some of these metadata fields can be customized during mapping creation.
Examples
Using _meta meta-field for storing application-specific information with the mapping:
PUT /my_index?pretty { "mappings": { "_meta": { "domain": "security", "release_information": { "date": "18-01-2020", "version": "7.5" } } } }
Notes
- In version 2.x, Elasticsearch had a total 13 meta fields available, which are: _index, _uid, _type, _id, _source, _size, _all, _field_names, _timestamp, _ttl, _parent, _routing, _meta
- In version 5.x, _timestamp and _ttl meta fields were removed.
- In version 6.x, the _parent meta field was removed.
- In version 7.x, _uid and _all meta fields were removed.
If you want to learn more about Elasticsearch templates, check out this guide.
Overview
A template in Elasticsearch falls into one of the two following categories and is indexed inside Elasticsearch using its dedicated endpoint:
- Index templates, which are a way to define a set of rules including index settings, mappings and an index pattern. The template is applied automatically whenever a new index is created with the matching pattern. Templates are also used to dynamically apply custom mapping for the fields which are not predefined inside existing mapping.
- Search templates, which help in defining templates for search queries using mustache scripting language. These templates act as a placeholder for variables defined inside the search queries.
Examples
Create a dynamic index template
PUT /_template/template_1?pretty { "index_patterns": [ "logs*", "api*" ], "settings": { "number_of_shards": 2 }, "mappings": { "dynamic_templates": [ { "strings": { "match_mapping_type": "string", "mapping": { "type": "keyword" } } } ], "properties": { "host_name": { "type": "keyword" }, "created_at": { "type": "date" } } } }
Create a search template
POST /_scripts/search_template_1?pretty { "script": { "lang": "mustache", "source": { "query": { "match": { "description": "{{query_string}}" } } } } }
Executing a search query using search template
GET /_search/template?pretty { "id": "search_template_1", "params": { "query_string": "hello world" } }
The search request will be executed by default on all the indices available in the cluster and can be limited to particular indices using an index parameter.
Notes
- A dynamic index template is always useful when you do not know the field names in advance and want to control their mapping as per the business use case.
Overview
An Elasticsearch cluster consists of a number of servers (nodes) working together as one. Clustering is a technology which enables Elasticsearch to scale up to hundreds of nodes that together are able to store many terabytes of data and respond coherently to large numbers of requests at the same time.
Search or indexing requests will usually be load-balanced across the Elasticsearch data nodes, and the node that receives the request will relay requests to other nodes as necessary and coordinate the response back to the user.
Notes and good things to know
The key elements to clustering are:
Cluster State – Refers to information about which indices are in the cluster, their data mappings and other information that must be shared between all the nodes to ensure that all operations across the cluster are coherent.
Master Node – Each cluster must elect a single master node responsible for coordinating the cluster and ensuring that each node contains an up-to-date copy of the cluster state.
Cluster Formation – Elasticsearch requires a set of configurations to determine how the cluster is formed, which nodes can join the cluster, and how the nodes collectively elect a master node responsible for controlling the cluster state. These configurations are usually held in the elasticsearch.yml config file, environment variables on the node, or within the cluster state.
Node Roles – In small clusters it is common for all nodes to fill all roles; all nodes can store data, become master nodes or process ingestion pipelines. However as the cluster grows, it is common to allocate specific roles to specific nodes in order to simplify configuration and to make operation more efficient. In particular, it is common to define a limited number of dedicated master nodes.
Replication – Data may be replicated across a number of data nodes. This means that if one node goes down, data is not lost. It also means that a search request can be dealt with by more than one node.
Common problems
Many Elasticsearch problems are caused by operations which place an excessive burden on the cluster because they require an excessive amount of information to be held and transmitted between the nodes as part of the cluster state. For example:
- Shards too small
- Too many fields (field explosion)
Problems may also be caused by inadequate configurations causing situations where the Elasticsearch cluster is unable to safely elect a Master node. This situation is discussed further in:
Backups
Because Elasticsearch is a clustered technology, it is not sufficient to have backups of each node’s data directory. This is because the backups will have been made at different times and so there may not be complete coherency between them. As such, the only way to backup an Elasticsearch cluster is through the use of snapshots, which contain the full picture of an index at any one time.
Cluster resilience
When designing an Elasticsearch cluster, it is important to think about cluster resilience. In particular – what happens when a single node goes down? And for larger clusters where several nodes may share common services such as a network or power supply – what happens if that network or power supply goes down? This is where it is useful to ensure that the master eligible nodes are spread across availability zones, and to use shard allocation awareness to ensure that shards are spread across different racks or availability zones in your data center.
Log Context
Log “Error deleting template [{}]; request was not acknowledged” classname is TemplateUpgradeService.java.
We extracted the following from Elasticsearch source code for those seeking an in-depth context :
client.admin().indices().deleteTemplate(request; new ActionListener() { @Override public void onResponse(AcknowledgedResponse response) { if (response.isAcknowledged() == false) { anyUpgradeFailed.set(true); logger.warn("Error deleting template [{}]; request was not acknowledged"; template); } tryFinishUpgrade(anyUpgradeFailed); } @Override